

Solar America Initiative

Technology Pathway Partnerships (TPP's)

Purpose and Content

Purpose: Communicate SAI technical objectives and baseline procurement approach to prospective participants.

- Market-Informed R&D Strategy
- Program Phasing and Interdependencies
- Technology Pathway Partnership (TPP) Objectives
- Technical & Procurement (Financial Assistance) Strategy
- Stage Gate Management, Test & Evaluation
- TPP Procurement (Financial Assistance) Process
- Next Steps

Market-Informed R&D Strategy Not Just Profitability – PV Relevance

Projected U.S. Supply Curve for PV System, 2005-2030

Market-Informed R&D Strategy

Transition to Total System Cost Emphasis

Program Phasing & Interdependencies Complementary Activities Converge

Technical Pathway Partnerships

Procurement Objectives

Develop Total System Solutions:

 Industry-led efforts deliver total system solutions for requirements of residential, commercial, or utility applications – supports tracking of progress towards LCOE at parity with grid retail prices

Execute Time-Phased R&D Roadmaps:

 TPPs will be required to develop a high level R&D and technology roadmap that achieves the 2015 goals, with significant resolution in the plan for the first three years

Encourage Collaborative (Value-Added) Teaming:

 Create industry-led teams (TPP's) composed of multiple private/public companies, universities, and National Laboratories (non-NCPV)

Support the Diverse U.S. Industrial Base:

 Structure TPP solicitation to facilitate participation from small and large firms with promising technologies

Preserve Flexibility:

Plan for 3-Phases of SAI R&D activities (07-10, 11-13, 13-16)

Technical & Procurement Strategy

Baseline: Systems Teams (2-Tiers)

- Two Classes of Systems-Oriented Teams
 - Addresses present industry structure/maturity with 3–6 awards in each class
- Phase 1: R&D Project Duration of 3 Years (2007-2010)
 - Large Class \$60M Total Project Value (\$30M DOE Award; \$30M Cost Share)
 - Small Class \$30M Total Project Value (\$15M DOE Award; \$15M Cost Share)
 - Down-select following intermediate Stage Gate (After 16-18 Months)
- Teams must address all elements of the PV system value chain
 - Select specific components/sub-components for R&D, based on LCOE impact
 - Use commercially-available components where cost-effective
 - Team members performing R&D must have current capability
- Teams submit roadmap to systems meeting SAI 2015 cost goals
 - Includes performance/cost parameters for 2006 Benchmark, 2010, 2015
 - Detailed Statement of Objectives & Project Plan for Phase 1 (2007-2010)
 - "Technology Roadmap" for 2010-2015 is logical, but less detailed
 - Scope of Phase 1 project may include R&D for post-2009 commercialization

Baseline Partnership Activities

Systems Teams Optimize Designs, R&D

Technical Improvement Opportunities		Metrics			
TIER 1 TIOs	TIER 2 TIOs	Performance	Cost	O&M	Reliability
Modules	Module				
	Absorber				
	Cells and Contacts				
	Interconnects				
	Packaging				
	Manufacturing				
Inverters & BOS	Inverter				
	Inverter Software				
	Inverter Components/Design				
	Inverter Packaging/Manufacturing				
	Inverter Integration				
	Other BOS				
Storage	>>Under consideration<<				
SE&I	Systems Engineering & Integration				
	Manufacturing/Assembly				
	Installation/Maintenance				

- Teams will target selected components for R&D, based on analysis of impact on total system performance.
- Teams demonstrate new manufacturing approaches for selected components.
- Teams deliver full system for test, built from newly-developed and/or commercial components.

TPP Systems Team "Roadmap"

Concurrent Development to 2015 Goals

Residential System	Unit	2010 Target	2015 Target					
Element		Value	Value					
System Location	1-10/	Phoenix	F 00*					
System Size	kW	4.56*	5.92*					
Performance Parameters								
Modules								
Efficiency	%	16.0	20.0					
Power Rating	Wpdc	114**	148**					
Number of Modules	#	40	40					
Inverter								
Inverter Size	kW	4.56	5.92					
DC-AC Conversion	%	96	97					
Efficiency								
System Level								
System Derate	%	5	5					
Annual System Degradation	%	1	1					
Cost Parameters								
Module	\$/Wpdc	2.20	1.25					
Inverter	\$/Wp	0.69	0.30					
Other Balance of Systems	\$/Wpdc	0.40	0.33					
Installation	\$/Wpdc	0.57	0.42					
Other*	\$/Wpdc	1.14	1.00					
TOTAL INSTALLED	\$/Wpdc	5.00	3.30					
SYSTEM PRICE								
Reliability and O&M Parameters								
Inverter Lifetime –	Years	10	20					
Replacement Cycle								
Module and Overall System	Years	35	35					
Lifetime								
O&M Cost (not including	%	0.3	0.2					
inverter replacement)	installed							
	system							
	price							
	1							
CALCULATED LEVELIZED	\$/kWhac	0.15	0.09					
COST OF ENERGY	,,,,,,,,,,,,,,							

^{*}System size increases because module performance improves, where the number of modules in the system is kept fixed

- Roadmap identifies various R&D tasks that can "squeeze" cost out of the PV system value chain (TIO framework)
- R&D tasks are identified and prioritized, based on expected correlation with 2010 and 2015 target values specified in Application
- Phase 1 project scope is most detailed segment of roadmap with goal of delivering improved prototype product(s) for subsequent commercial launch

^{**}Module output increases because module efficiency increased, where the module area is kept constant

TPP R&D Activities

Multiple Solutions, Spiral Development

Module: Phase 1 - Primary Emphasis

TASK: Test ~ 3 new absorber deposition methods

TASK: Investigate device performance change with

2 new flexible substrate 2015

TASK: Conduct accelerated test of module reliability

with selected deposition method, substrate

Inverter: Phase 1 – Software Development, Materials Science

TASK: Develop new SW architecture that permits interface to building demand response systems

TASK: Identify new materials chemistries, investigate manufacturability for new capacitors

TPP R&D Activities

Multiple Solutions, Spiral Development

TPP Project Scope/Schedule

Aligned R&D Activities, Stage Gates

TPP Phase 1 Plan & Budget

Funding Phased for PD Lifecycle, Down-Select

TPP Budget Profile - Cost Optimized

SG

SG

1 APPLIED RESEARCH

2 PRELIMINARY

INVESTIGATIONS

Stage Gate Management TPP's Tailor SG Framework to Project Plan

- DOE's intent is to provide common terminology for description and evaluation of product/process maturity, across diverse partnerships.
- DOE does not want to prescribe a deterministic development cycle, and is open to suggestions towards this purpose.

SG

3 TECHNOLOGY R&D

SG

SG

SG

SYSTEM DEVEL

4 PROTOTYPE

Test & Evaluation

TPP's Tailor SG Framework to Project Plan

- TPP Project Plan in application will include protocols sufficient to conduct credible, independent evaluation of deliverables/milestones.
 - If DOE-funded facilities/protocols are not sufficient to evaluate unique deliverables, alternative protocols must be specified.
 - The SAI TPP FOA will identify protocols for handling of proprietary data.
- DOE-SETP will review and approve expected test protocols and documentation, in the negotiation process prior to award.
- DOE/NCPV will maintain a master schedule for TPP and DOE program internal T&E activity, including required DOE "core" funding.
- The DOE will continue to fund core T&E activities (e.g. NREL Measurement & Characterization, RES) – for the *entire* US PV community, independent of specific TPP contracts (TPP's a priority).

U.S. Department of Energy Energy Efficiency and Renewable Energy

TPP Procurement Process

Application Content Requirements

Statement of Objectives (Integrated Systems Approach):

- Market analysis for targeted product applications (incl. system requirements)
- Product research & development roadmap to 2015
- A manufacturing process & supply chain roadmap to 2015

Implementation/Project Management Plan:

- Detailed description of Phase 1 tasks in a TIO-based work breakdown structure, identifies organizational assignments and cost estimates
- Resource-loaded integrated master schedule including critical path (milestones), tailored stage gate commitments/deliverables

Qualifications and Resources:

- Description of technical capabilities key personnel, facilities, equipment
- Relevant past performance and current business operations

Business Plan:

- Plan describes how collaborating team will manufacture, integrate,
 distribute, market, and deploy systems in the commercial market place
- Supply chain analysis (bill of materials) addresses all major manufacturing costs and other operational factors

Next Steps

TPP Planning & Procurement Sequence

- Receive stakeholder input via TEM breakout sessions
- Receive stakeholder input via NOPI responses
- Formulate SAI Posture Plan
 - Technical & Procurement Strategy
 - Stage Gate Management Approach
 - Test & Evaluation Approach
- Formulate and issue Funding Opportunity Announcement (FOA)
- Provide needed guidance to FOA application development
- Receive, evaluate, select applications to FOA
- Commence negotiations with selected TPP teams
- Award TPP cooperative agreements, initiate R&D